Abstract Submitted to the International Conference on Strongly Correlated Electron Systems University of Michigan, Ann Arbor August 6-10, 2001

Probing the singlet character of the two-hole states in cuprate superconductors

G. Ghiringhelli*¹, N.B. Brookes², L.H. Tjeng³, T. Mizokawa⁵, O. Tjernberg⁶, P.G. Steeneken³, A.A. Menovsky⁴

- ¹ INFM, Politecnico di Milano, p. Leonardo da Vinci 32, 20133 Milano, Italy.
- ² ESRF, BP 220, 38043 Grenoble, France.
- ³ MSC, Univ. of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands.
- ⁴ Univ. of Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, Netherlands.
- ⁵ University of Tokyo, Tokyo 113-0033, Japan.
- ⁶ Department of Physics, KTH, S-10044 Stockholm, Sweden.

Using spin-resolved resonant photoemission we have probed the singlet vs triplet character of the two-hole state in the layered cuprates $Bi_2Sr_2CaCu_2O_{8+\delta}$, $La_{2-x}Sr_xCuO_4$, $Nd_{2-x}Ce_xCuO_4$ and $Sr_2CuO_2Cl_2$. The combination of the photon circular polarization with the photoelectron spin detection[†] gives access to the character of the photoemission final states, which correspond to the two-hole configurations localized at a (CuO_4) site. In particular the lowest energy state is found to have a very high singlet character in all the measured compounds. This can be considered as a strong indication of the existence and stability of the so-called Zhang-Rice singlets in the layered cuprates. In the case of the Bi2212 superconducting compound[‡] we have verified that the character of the first ionization state does not appreciably change across the critical temperature.

^{*}also: ESRF, BP 220, 38043 Grenoble, France.

[†]L.H. Tjeng *et al*, Phys. Rev. Lett. **78**, 1126 (1997)

[‡]ESRF Highlights 1999, page 47